

Synthesis and Initial Structure–Activity Relationships of Modified Salicylihalamides

Yusheng Wu, Olga R. Seguil, and Jef K. De Brabander*

Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9038

Supporting Information

I. General techniques

Unless noted otherwise, commercially available materials were used without further purification. All solvents used were of HPLC- or ACS-grade. Solvents used for moisture sensitive operations were distilled from drying agents under a nitrogen atmosphere: Et₂O and THF from sodium benzophenone ketyl; benzene and toluene from sodium; CH₂Cl₂, CH₃CN, NEt₃ and pyridine from CaH₂. All moisture sensitive reactions were carried out under a nitrogen atmosphere with magnetic stirring. Flash chromatography (FC) was performed using *E Merck* silicagel 60 (240-400 mesh) according to the protocol of Still, Kahn, and Mitra (*J. Org. Chem.* **1978**, *43*, 2923). Thin Layer chromatography was performed using precoated plates purchased from *E. Merck* (silicagel 60 PF254, 0.25 mm) that were visualized using a KMnO₄ or Ce(IV) stain.

Nuclear magnetic resonance (NMR) spectra were recorded on either a *Varian Inova-400* or *Mercury-300* spectrometer at operating frequencies of 400 / 300 MHz (¹H NMR) or 100 / 75 MHz (¹³C NMR). Chemical shifts (δ) are given in ppm relative to residual solvent (usually chloroform; δ 7.27 for ¹H NMR or δ 77.25 for proton decoupled ¹³C NMR), and coupling constants (J) in Hz. Multiplicity is tabulated as s for singlet, d for doublet, t for triplet, q for quadruplet, and m for multiplet, whereby the prefix *app* is applied in cases where the true multiplicity is unresolved, and *br* when the signal in question is broadened.

Infrared spectra were recorded on a *Perkin-Elmer 1000* series FTIR with wavenumbers expressed in cm⁻¹ using samples prepared as thin films between salt plates. Mass spectra were recorded on a Finnigan SSQ700 [Chemical Ionization (CI) or Electron Impact (EI)] or a *Micromass Quattro II* mass spectrometer [Electro-Spray (ES)]. High-resolution mass spectra (HRMS) were recorded at the NIH regional mass spectrometry facility at the University of Washington, St. Louis, MO.

II. Experimental procedures

1. Procedure for acyl azide formation from acid **9**

To a stirred solution of acid **9** (52 mg, 0.0883 mmol) and (PhO)₂P(O)N₃ (77.3 μ L; 0.353 mmol) in benzene (4 mL) was added Et₃N (58 μ L) at RT. After stirring for 14 h at RT, the solvent was removed and the residue was purified by FC (silicagel, 2.5% EtOAc in hexanes). The corresponding acyl azide was obtained in 92% yield (50 mg).

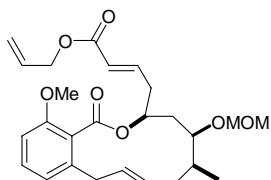
2. Curtius rearrangement and preparation of **1, 11-13**

The acyl azide derived from **9** (12 mg; 0.0195 mmol) in benzene (1 mL) was stirred at 75°C for 6 h, after which the solvent was removed and the residue (isocyanate **10**) dissolved in diethyl ether (1 mL). In a separate flask, a 0.15 M solution of 1-lithio-1,3-hexadiene was prepared by the addition of *t*-BuLi (2.05 equiv with respect to the bromide) to a solution of the corresponding bromide in THF at -78°C. After stirring for 45 min at -78°C and warming to RT, the organolithium (0.15 M in THF; 143 μ L; 0.0215 mmol) was added dropwise to the ethereal solution of isocyanate **10** at -78°C. The mixture was allowed to reach 0°C over a 1 h period followed by the addition of pH 7.0 phosphate buffer. Extraction with diethyl ether (3 \times), drying (Na₂SO₄), concentration and rapid purification by FC

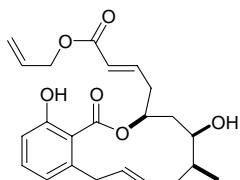
Wu, Y.; Seguil, O. R.; De Brabander, J. K. "Synthesis and Initial Structure–Activity Relationships of Modified Salicylihalamides."

(silicagel, 6% EtOAc in hexanes containing 0.2% Et₃N) gave 3.7 mg of a less polar product **i** and 5.9 mg of a more polar product **ii**.

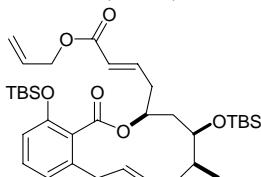
The less polar product **i** was treated with 250 μ L of a solution prepared from 0.5 g commercial HF-pyridine in 1.25 mL pyridine and 6.75 mL THF. The more polar product **ii** was similarly treated with 410 μ L of the same solution. After stirring for 48 h at RT, the reactions were quenched with a phosphate buffer (pH 7.0; 10 mL), extracted with EtOAc (4 \times), dried (Na₂SO₄) and concentrated. The product derived from deprotection of **ii** was purified by normal-phased semi-preparative HPLC (5 μ Luna silicagel; 250 \times 10 mm column; 25% acetone in hexanes, t_R = 25 min) yielding 1.7 mg of a 1:1 mixture of salicylihalamide A (**1**) and the corresponding geometrical isomer **11** (20% from acyl azide). The product derived from deprotection of **i** provided two fractions after HPLC purification (35% acetone in hexanes): 1.5 mg of **13** (t_R = 25.7 min; 10% yield from acyl azide) and 1.5 mg of **12** (t_R = 26.7 min; 10% yield from acyl azide). The combined overall yield for **1**, **11-13** from acyl azide is 40%.

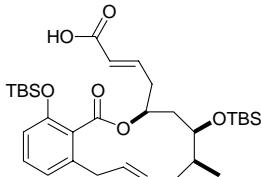

3. Curtius rearrangement and preparation of **14** and **15**

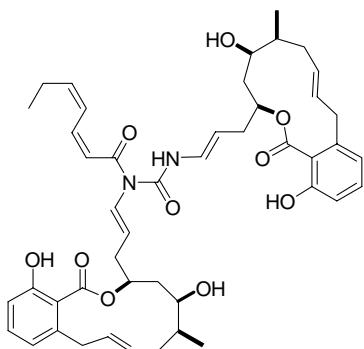
Following the procedure described above, acyl azide (9.0 mg; 0.0146 mmol) was converted to isocyanate **10**, followed by the addition of *n*-hexyllithium (0.15 M in THF; prepared from the bromide as described above). Workup and rapid purification by FC (silicagel, 15% EtOAc in hexanes containing 0.2% Et₃N) gave 4.0 mg of a less polar product **i** and 4.2 mg of a more polar product **ii**. Deprotection and purification by semi-preparative HPLC as described above yielded 1.4 mg (22%) of **14** (derived from **ii**) and 1.6 mg (14%) of the corresponding dimer **15** (derived from **i**) respectively.

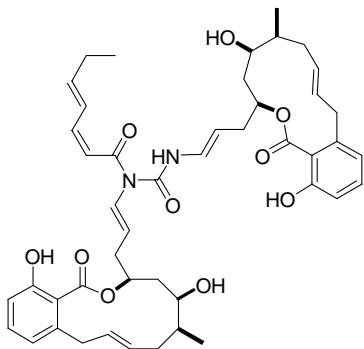

4. Curtius rearrangement and preparation of carbamate **16**

A solution of the acyl azide derived from acid **9** (10.0 mg; 0.0163 mmol) and 1-pentanol (11 μ L; 0.1019 mmol) in benzene (1 mL) was stirred for 8 h at 80°C. After removal of the solvent, the residue was treated with 780 μ L of a solution prepared from 0.5 g commercial HF-pyridine in 1.25 mL pyridine and 6.75 mL THF. After stirring for 24 h at RT, the reaction were quenched with a phosphate buffer (pH 7.0; 10 mL), extracted with EtOAc (4 \times), dried (Na₂SO₄) and concentrated. Purification by FC (silicagel; 25% acetone in hexanes) yielded 3.4 mg of carbamate **16** (0.00763 mmol; 47%).

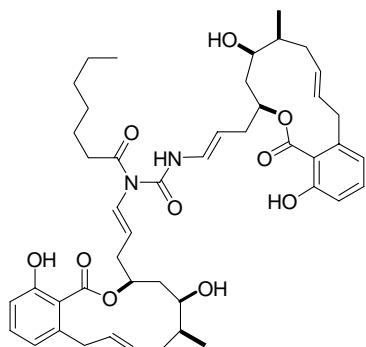

III. Characterization data

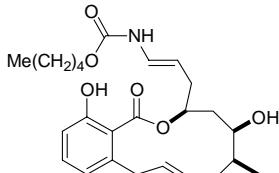

6: ¹H NMR (400 MHz, CDCl₃) δ 7.23 (1H, *app.t*, J = 8.0 Hz), 7.14 (1H, *ddd*, J = 6.0, 8.0, 15.6 Hz), 6.81 (1H, *d*, J = 8.4 Hz), 6.75 (1H, *d*, J = 7.2 Hz), 5.95 (1H, *d*, J = 15.6 Hz), 5.90-6.00 (1H, *m*), 5.32-5.52 (3H, *m*), 5.33 (1H, *td*, J = 1.2, 17.0 Hz), 5.24 (1H, *td*, J = 1.2, 10.4 Hz), 4.89 (1H, *d*, J = 6.8 Hz), 4.81 (1H, *d*, J = 6.8 Hz), 4.64 (2H, *dd*, J = 1.2, 5.6 Hz), 4.16 (1H, *dd*, J = 3.6, 9.6 Hz), 3.85 (3H, *s*), 3.71 (1H, *dd*, J = 9.6, 16.4 Hz), 3.45 (3H, *s*), 3.32 (1H, *br d*, J = 16.4 Hz), 2.65 (1H, *ddd*, J = 6.0, 7.6, 15.6 Hz), 2.47 (1H, *ddd*, J = 4.0, 8.0, 15.6 Hz), 2.27-2.36 (1H, *m*), 2.08-2.19 (1H, *m*), 1.76 (1H, *dd*, J = 8.8, 15.6), 1.70 (1H, *app.dt*, J = 11.6, 14.0 Hz), 1.44 (1H, *dd*, J = 9.6, 15.6 Hz), 0.86 (3H, *d*, J = 6.4 Hz).

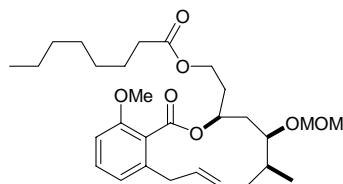

7: $[\alpha]_D = +4.32$ (*c* 0.88, CHCl_3); IR 3407, 3172, 2959, 1731, 1690, 1656, 1590 cm^{-1} ; ^1H NMR (400 MHz, CDCl_3) δ 11.0 (1H, s), 7.31 (1H, dd, *J* = 7.6, 8.4 Hz), 7.01 (1H, *app.dt*, *J* = 7.2, 15.6 Hz), 6.89 (1H, dd, *J* = 0.8, 8.4 Hz), 6.71 (1H, dd, *J* = 0.8, 7.6 Hz), 5.97 (1H, d, *J* = 15.6 Hz), 5.95 (1H, ddt, *J* = 5.6, 10.4, 15.6 Hz), 5.64 (1H, *app.dt*, *J* = 5.2, 11.2 Hz), 5.44-5.52 (1H, m), 5.33 (1H, *app.qd*, *J* = 1.2, 15.6 Hz), 5.24 (1H, *app.qd*, *J* = 1.2, 10.4 Hz), 5.02-5.13 (1H, m), 4.65 (1H, *app.td*, *J* = 1.2, 5.6 Hz), 3.74 (1H, dd, *J* = 5.6, 16.4 Hz), 3.62 (1H, dd, *J* = 3.2, 8.8 Hz), 3.38 (1H, *br d*, *J* = 16.4 Hz), 2.56-2.69 (2H, m), 2.31-2.40 (1H, m), 2.03 (1H, dd, *J* = 11.2, 15.2), 1.79-1.97 (2H, m), 1.52-1.72 (1H, m), 1.44 (1H, *ddd*, *J* = 1.2, 8.4, 14.8 Hz), 0.93 (3H, d, *J* = 6.8 Hz); ^{13}C NMR (75 MHz, CDCl_3) δ 171.1, 165.9, 163.1, 143.7, 142.5, 134.5, 133.2, 132.3, 126.5, 124.5, 123.9, 118.5, 116.9, 113.1, 73.2, 70.5, 65.3, 39.3, 38.6, 38.0, 37.5, 35.6, 13.9; MS (CI) *m/z* (%): 401 (28), 383 (30), 343 (37), 325 (100); HRMS (FAB) Calcd for $\text{C}_{23}\text{H}_{29}\text{O}_6$ (MH^+): 401.1964. Found: 401.1973.

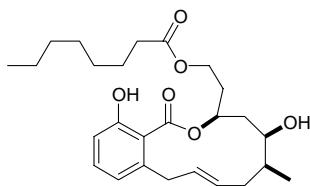

8: ^1H NMR (400 MHz, CDCl_3) δ 7.12 (1H, *app.t*, *J* = 8.0 Hz), 6.93 (1H, *app.dt*, *J* = 7.2, 15.6 Hz), 6.75 (1H, d, *J* = 7.6 Hz), 6.72 (1H, d, *J* = 8.0 Hz), 5.95 (1H, ddt, *J* = 6.0, 10.4, 17.2 Hz), 5.94 (1H, d, *J* = 15.6 Hz), 5.29-5.46 (3H, m), 5.33 (1H, *app.qd*, *J* = 1.6, 17.2 Hz), 5.24 (1H, *app.qd*, *J* = 1.6, 10.4 Hz), 4.64 (2H, dd, *J* = 1.6, 5.6 Hz), 4.26 (1H, dd, *J* = 3.2, 8.8 Hz), 3.65 (1H, dd, *J* = 8.8, 16.4 Hz), 3.32 (1H, *br d*, *J* = 16.4 Hz), 2.55-2.60 (2H, m), 2.22-2.30 (1H, m), 1.76-1.85 (1H, m), 1.65-1.75 (1H, m), 1.67 (1H, dd, *J* = 8.8, 15.6 Hz), 1.41 (1H, dd, *J* = 8.8, 15.6 Hz), 0.96 (9H, s), 0.90 (9H, s), 0.83 (3H, d, *J* = 6.4 Hz), 0.22 (3H, s), 0.20 (3H, s), 0.15 (3H, s), 0.12 (3H, s).

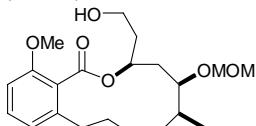
9: $[\alpha]_D = +2.0$ (*c* 1.84, CHCl_3); IR 2956, 2930, 2858, 1728, 1700, 1652, 1582, 1457 cm^{-1} ; ^1H NMR (400 MHz, CDCl_3) δ 7.13 (1H, *app.t*, *J* = 8.0 Hz), 7.02 (1H, *app.dt*, *J* = 7.2, 15.6 Hz), 6.75 (1H, d, *J* = 7.6 Hz), 6.72 (1H, d, *J* = 8.0 Hz), 5.93 (1H, d, *J* = 15.6 Hz), 5.30-5.46 (3H, m), 4.26 (1H, dd, *J* = 3.2, 8.8 Hz), 3.66 (1H, dd, *J* = 8.8, 16.0 Hz), 3.32 (1H, *br d*, *J* = 16.0 Hz), 2.60 (2H, *app.t*, *J* = 6.8 Hz), 2.21-2.30 (1H, m), 1.75-1.86 (1H, m), 1.35-1.45 (1H, m), 0.96 (9H, s), 0.91 (9H, s), 0.83 (3H, d, *J* = 6.4 Hz), 0.22 (3H, s), 0.20 (3H, s), 0.15 (3H, s), 0.12 (3H, s); ^{13}C NMR (75 MHz, CDCl_3) δ 171.5, 168.4, 152.9, 146.5, 138.9, 131.6, 129.8, 128.5, 127.5, 123.8, 123.4, 118.0, 72.5, 72.2, 38.7, 38.3, 38.2, 37.3, 36.5, 26.1, 25.9, 18.5, 18.2, 13.2, -3.9, -4.19, -4.24, -4.3; MS (ES) *m/z* (%): 589 (10), 531 (21), 457 (18), 367 (40), 115 (78), 73 (100); HRMS (FAB) Calcd for $\text{C}_{32}\text{H}_{53}\text{O}_6\text{Si}_2$ (MH^+): 589.3381. Found: 589.3391.

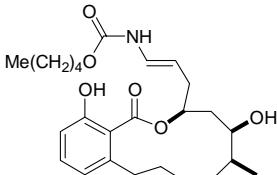

12: ^1H NMR (400 MHz, CD_3OD) δ 7.14 (1H, *app.t*, J = 8.0 Hz), 7.13 (1H, *app.t*, J = 8.0 Hz), 7.06 (1H, *app.t*, J = 11.2 Hz), 6.75 (1H, *d*, J = 8.0 Hz), 6.72 (1H, *d*, J = 14.0 Hz), 6.71 (1H, *d*, J = 8.0 Hz), 6.68 (1H, *d*, J = 7.6 Hz), 6.67 (1H, *d*, J = 7.6 Hz), 6.61 (1H, *app.t*, J = 12.0 Hz), 6.44 (1H, *d*, J = 14.0 Hz), 6.09 (1H, *d*, J = 11.6 Hz), 5.81-5.90 (2H, *m*), 5.51 (1H, *ddd*, J = 6.4, 8.4, 14.8 Hz), 5.23-5.48 (6H, *m*), 4.18 (1H, *dd*, J = 3.6, 9.6 Hz), 4.17 (1H, *dd*, J = 3.6, 9.6 Hz), 3.62 (1H, *dd*, J = 8.8, 15.6 Hz), 3.58 (1H, *dd*, J = 8.8, 15.6 Hz), 3.37 (2H, *br d*, J = 15.6 Hz), 2.42-2.61 (3H, *m*), 2.25-2.40 (3H, *m*), 2.15-2.24 (2H, *m*), 1.84-1.95 (2H, *m*), 1.68-1.87 (4H, *m*), 1.30-1.43 (2H, *m*), 0.97 (3H, *t*, J = 7.2 Hz), 0.87 (6H, *d*, J = 6.8 Hz); MS (ES) m/z (%): 819.33 ($[\text{M}+\text{Na}]^+$, 35), 797.34 ($[\text{M}+\text{H}]^+$, 100); HRMS (FAB) Calcd for $\text{C}_{46}\text{H}_{57}\text{N}_2\text{O}_{10}$ (MH^+): 797.4013. Found: 797.4015.

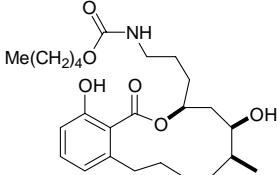

13: ^1H NMR (400 MHz, CD_3OD) δ 7.21 (1H, *dd*, J = 11.2, 15.2 Hz), 7.14 (1H, *app.t*, J = 8.0 Hz), 7.13 (1H, *app.t*, J = 7.6 Hz), 6.75 (1H, *d*, J = 7.6 Hz), 6.74 (1H, *d*, J = 13.6 Hz), 6.71 (1H, *d*, J = 8.0 Hz), 6.68 (1H, *d*, J = 7.2 Hz), 6.67 (1H, *d*, J = 7.6 Hz), 6.45 (1H, *d*, J = 13.6 Hz), 6.29 (1H, *app.t*, J = 11.2 Hz), 6.07 (1H, *dt*, J = 6.8, 15.2 Hz), 5.99 (1H, *d*, J = 11.6 Hz), 5.84 (1H, *app.dt*, J = 6.8, 14.0 Hz), 5.51 (1H, *ddd*, J = 6.4, 8.0, 14.4 Hz), 5.23-5.47 (6H, *m*), 4.18 (1H, *dd*, J = 4.4, 8.8 Hz), 4.17 (1H, *dd*, J = 4.4, 8.8 Hz), 3.61 (1H, *dd*, J = 8.8, 16.8 Hz), 3.58 (1H, *dd*, J = 8.4, 16.4 Hz), 3.37 (2H, *br d*, J = 16.4 Hz), 2.42-2.55 (3H, *m*), 2.25-2.40 (3H, *m*), 2.15-2.24 (2H, *m*), 1.84-1.95 (2H, *m*), 1.69-1.87 (4H, *m*), 1.32-1.43 (2H, *m*), 1.04 (3H, *t*, J = 7.2 Hz), 0.87 (6H, *d*, J = 6.8 Hz); MS (ES) m/z (%): 819.30 ($[\text{M}+\text{Na}]^+$, 60), 797.34 ($[\text{M}+\text{H}]^+$, 100); HRMS (FAB) Calcd for $\text{C}_{46}\text{H}_{57}\text{N}_2\text{O}_{10}$ (MH^+): 797.4013. Found: 797.4021.


14: ^1H NMR (400 MHz, CD_3OD) δ 7.15 (1H, *app.t*, J = 8.0 Hz), 6.76 (1H, *d*, J = 14.0 Hz), 6.74 (1H, *d*, J = 8.0 Hz), 6.67 (1H, *d*, J = 7.2 Hz), 5.25-5.44 (4H, *m*), 4.13 (1H, *dd*, J = 3.2, 8.8 Hz), 3.57 (1H, *dd*, J = 8.0, 16.4 Hz), 3.37 (1H, *br d*, J = 16.4 Hz), 2.25-2.46 (3H, *m*), 2.22 (2H, *t*, J = 7.2 Hz), 1.84-1.95 (1H, *m*), 1.71-1.83 (2H, *m*), 1.57-1.66 (2H, *m*), 1.28-1.42 (7H, *m*), 0.91 (3H, *t*, J = 7.2 Hz), 0.87 (3H, *d*, J = 6.8 Hz); MS (ES) m/z (%): 466.24 ($[\text{M}+\text{Na}]^+$, 17), 444.26 ($[\text{M}+\text{H}]^+$, 100); HRMS (FAB) Calcd for $\text{C}_{26}\text{H}_{38}\text{NO}_5$ (MH^+): 444.2750. Found: 444.2759.

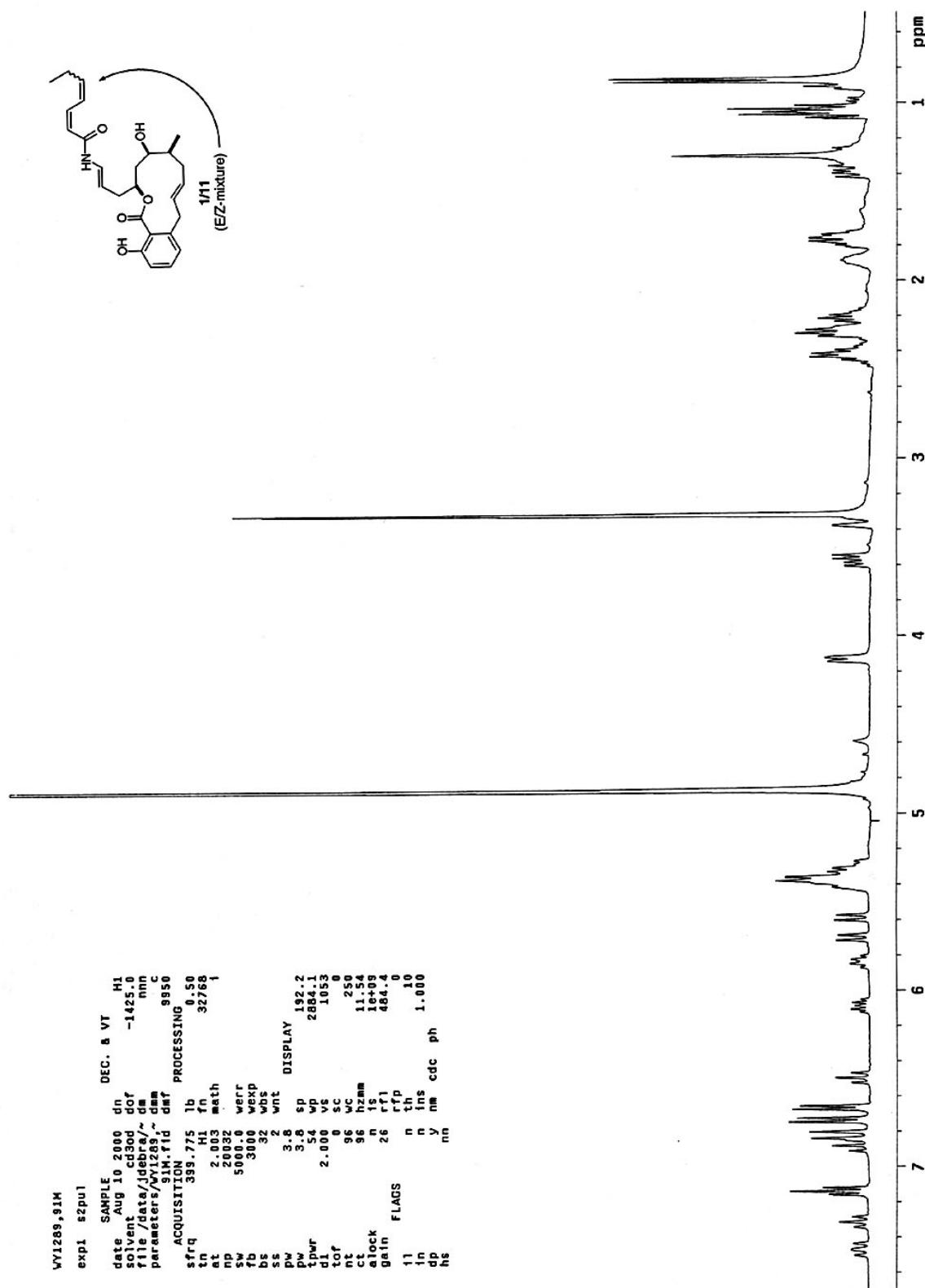

15: ^1H NMR (400 MHz, CD_3OD) δ 7.14 (1H, *app.t*, J = 7.6 Hz), 7.12 (1H, *app.t*, J = 7.2 Hz), 6.75 (1H, *d*, J = 8.4 Hz), 6.73 (1H, *d*, J = 14.4 Hz), 6.72 (1H, *d*, J = 8.8 Hz), 6.67 (2H, *d*, J = 7.2 Hz), 6.35 (1H, *d*, J = 14.0 Hz), 6.00 (1H, *app.dt*, J = 7.6, 14.4 Hz), 5.50 (1H, *ddd*, J = 6.4, 8.4, 14.4 Hz), 5.25-5.46 (6H, *m*), 4.19 (1H, *dd*, J = 3.2, 9.2 Hz), 4.16 (1H, *dd*, J = 3.2, 8.8 Hz), 3.60 (1H, *dd*, J = 8.0, 16.0 Hz), 3.59 (1H, *dd*, J = 7.6, 16.0 Hz), 3.37 (2H, *br d*, J = 16.0 Hz), 2.63 (1H, *app.dt*, J = 7.6, 16.8 Hz), 2.40-2.56 (4H, *m*), 2.24-2.39 (3H, *m*), 1.70-1.95 (6H, *m*), 1.47-1.57 (2H, *m*), 1.21-1.43 (8H, *m*), 0.87 (3H, *d*, J = 6.8 Hz), 0.86 (3H, *d*, J = 6.8 Hz), 0.86 (3H, *t*, J = 7.2 Hz); MS (ES) m/z (%): 823.33 ($[\text{M}+\text{Na}]^+$, 50), 801.37 ($[\text{M}+\text{H}]^+$, 100); HRMS (FAB) Calcd for $\text{C}_{46}\text{H}_{61}\text{N}_2\text{O}_{10}$ (MH^+): 801.4326. Found: 801.4334.

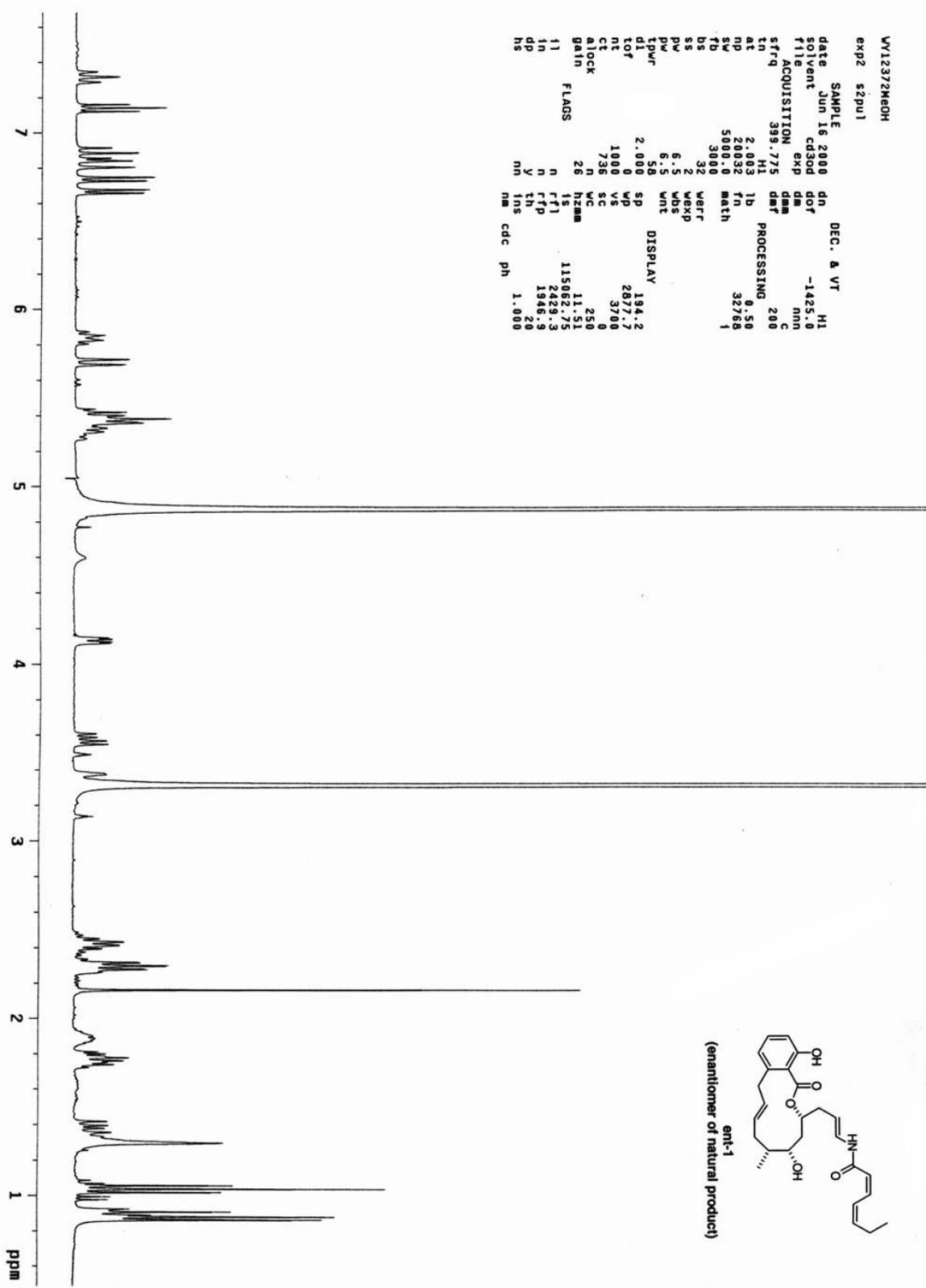

16: $[\alpha]_D$ = -18.8 (c 0.17, MeOH); ^1H NMR (400 MHz, CD_3OD) δ 7.14 (1H, *app.t*, J = 8.0 Hz), 6.73 (1H, *d*, J = 8.0 Hz), 6.67 (1H, *d*, J = 7.2 Hz), 6.49 (1H, *d*, J = 14.4 Hz), 5.26-5.44 (3H, *m*), 5.18 (1H, *app.dt*, J = 7.2, 14.4 Hz), 4.13 (1H, *dd*, J = 3.6, 9.2 Hz), 4.07 (2H, *t*, 6.4 Hz), 3.57 (1H, *dd*, J = 8.4, 16.4 Hz), 3.36 (1H, *br d*, J = 16.4 Hz), 2.25-2.44 (3H, *m*), 1.84-1.95 (1H, *m*), 1.71-1.82 (2H, *m*), 1.60-1.69 (2H, *m*), 1.33-1.41 (5H, *m*), 0.93 (3H, *t*, J = 7.6 Hz), 0.87 (3H, *d*, J = 6.4 Hz); ^{13}C NMR (75 MHz, CD_3OD) δ 171.2, 157.2, 156.6, 140.8, 131.83, 131.76, 127.8, 123.2, 122.6, 115.4, 106.9, 76.4, 72.1, 66.4, 39.1, 38.9, 38.7, 37.5, 36.6, 29.9, 29.3, 23.5, 14.5, 13.7; MS (ES) m/z (%): 468.20 ($[\text{M}+\text{Na}]^+$, 26), 446.23 ($[\text{M}+\text{H}]^+$, 100); HRMS (FAB) Calcd for $\text{C}_{25}\text{H}_{36}\text{NO}_6$ (MH^+): 446.2543. Found: 446.2528.

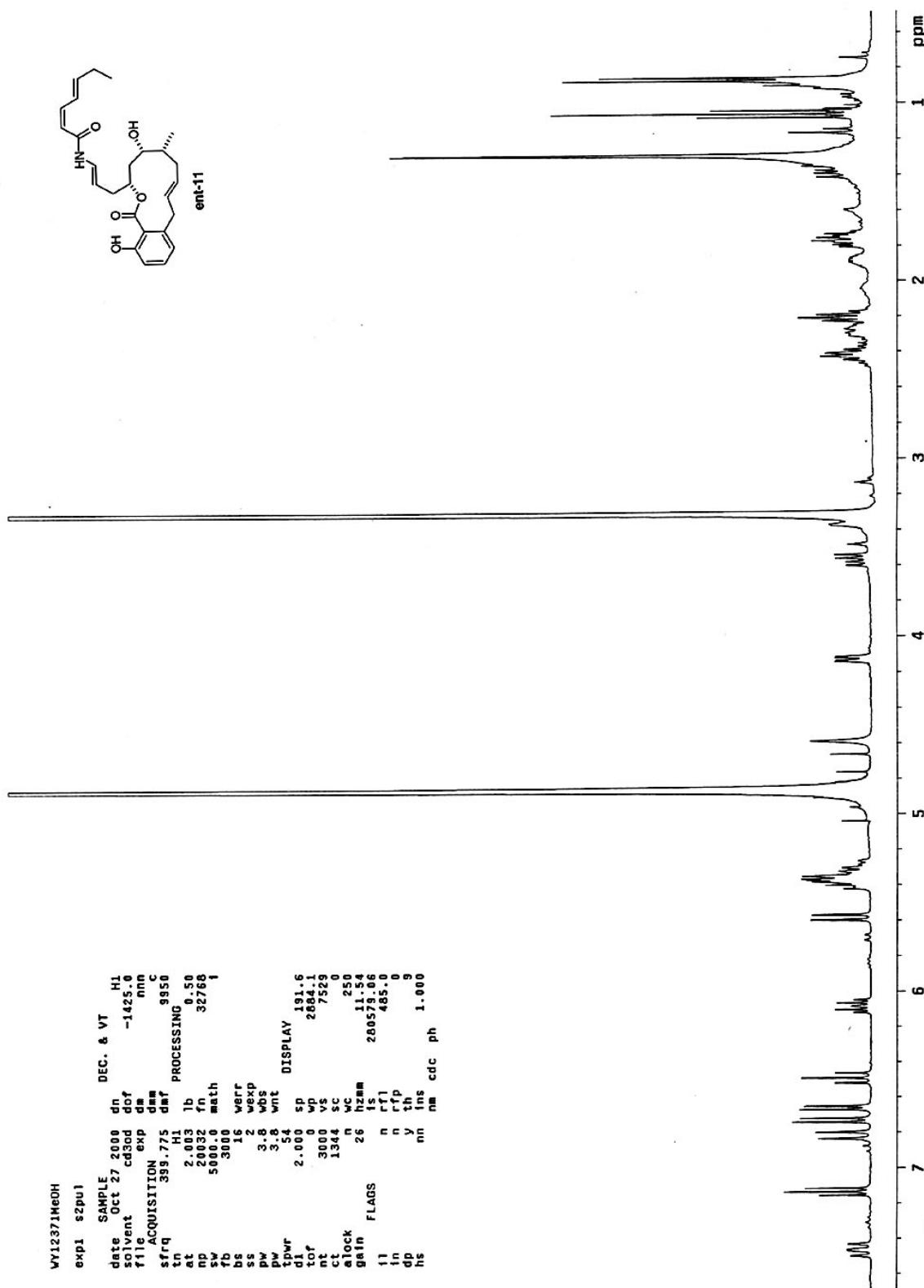

17: ^1H NMR (400 MHz, CDCl_3) δ 7.23 (1H, *app.t*, J = 8.4 Hz), 6.80 (1H, *d*, J = 8.4 Hz), 6.75 (1H, *d*, J = 7.6 Hz), 5.42-5.53 (2H, *m*), 5.35 (1H, *app.ddt*, J = 2.4, 9.6, 15.2 Hz), 4.90 (1H, *d*, J = 6.8 Hz), 4.82 (1H, *d*, J = 6.8), 4.27 (1H, *ddd*, J = 4.8, 7.6, 11.2 Hz), 4.22 (1H, *ddd*, J = 6.4, 8.8, 11.2 Hz), 4.18 (1H, *dd*, J = 3.6, 9.2 Hz), 3.18 (3H, *s*), 3.72 (1H, *dd*, J = 9.6, 16.4 Hz), 3.47 (3H, *s*), 3.32 (1H, *dddt*, J = 2.0, 2.0, 4.4, 16.4 Hz), 2.27-2.36 (1H, *m*), 2.29 (2H, *t*, J = 7.2 Hz), 2.07-2.18 (1H, *m*), 1.87-2.06 (2H, *m*), 1.78 (1H, *dd*, J = 8.8, 15.6 Hz), 1.71 (1H, *app.dt*, J = 11.6, 14.4 Hz), 1.53-1.67 (2H, *m*), 1.43 (1H, *dd*, J = 9.2, 15.2 Hz), 1.22-1.34 (8H, *m*), 0.87 (3H, *d*, J = 6.8 Hz), 0.87 (3H, *t*, J = 6.8 Hz); ^{13}C NMR (75 MHz, CDCl_3) δ 174.2, 168.5, 156.7, 139.2, 131.6, 130.3, 128.7, 124.5, 122.9, 109.3, 97.1, 79.4, 71.5, 61.1, 55.8, 55.6, 38.0, 37.9, 36.1, 35.4, 34.6, 34.2, 31.9, 29.3, 29.1, 25.2, 22.8, 14.3, 13.5.

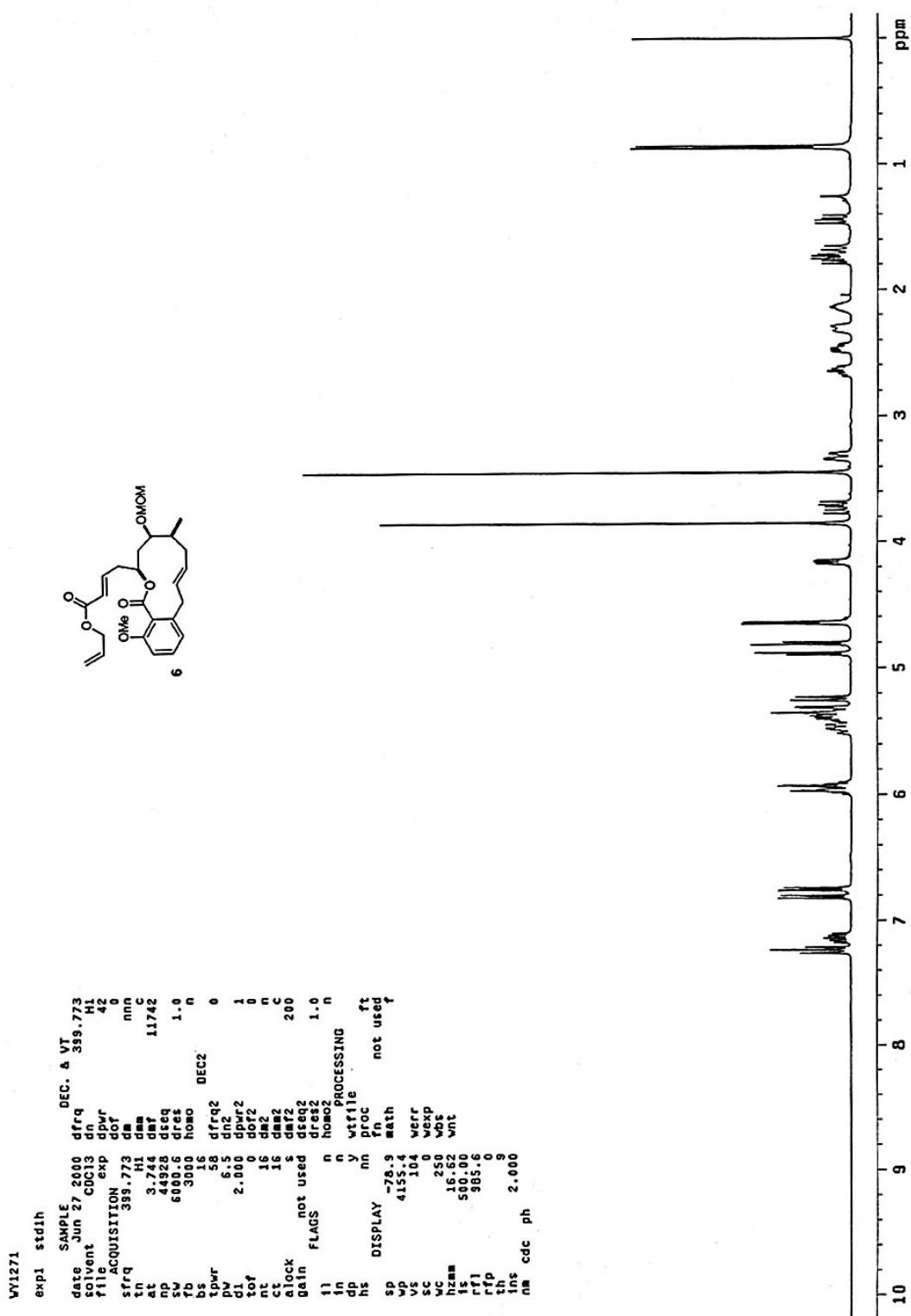

18: $[\alpha]_D = -3.72$ (c 0.2, CHCl_3); IR 3412, 3152, 2918, 2850, 1738, 1686, 1591, 1467 cm^{-1} ; ^1H NMR (400 MHz, CDCl_3) δ 11.0 (1H, *br s*), 7.30 (1H, dd, J = 7.6, 8.4 Hz), 6.90 (1H, dd, J = 0.8, 8.4 Hz), 6.71 (1H, dd, J = 0.8, 7.6 Hz), 5.62 (1H, *app.ddt*, J = 0.8, 6.0, 12.0 Hz), 5.49 (1H, *br d*, J = 15.6 Hz), 5.03-5.13 (1H, m), 4.24 (1H, *app.dt*, J = 6.0, 6.4, 11.6 Hz), 4.18 (1H, *app.dt*, J = 6.0, 11.6 Hz), 3.76 (1H, dd, J = 6.0, 17.2 Hz), 3.64 (1H, dd, J = 3.6, 8.8 Hz), 3.39 (1H, *br d*, J = 17.2 Hz), 2.30-2.40 (1H, m), 2.27 (2H, t, J = 7.2 Hz), 1.99-2.09 (3H, m), 1.78-1.97 (2H, m), 1.54-1.64 (2H, m), 1.39 (1H, *ddd*, J = 0.8, 8.8, 15.2 Hz), 1.20-1.34 (8H, m), 0.93 (3H, d, J = 6.8 Hz), 0.88 (3H, t, J = 7.2 Hz); ^{13}C NMR (75 MHz, CDCl_3) δ 174.2, 171.2, 162.8, 142.4, 134.3, 133.1, 126.6, 123.8, 117.0, 113.4, 72.3, 70.6, 60.8, 39.3, 38.6, 37.5, 34.7, 34.5, 31.9, 29.9, 29.3, 29.1, 25.1, 22.8, 14.3, 13.9; MS (CI) m/z (%): 447 (30), 429 (70), 303 (36), 285 (75), 145 (100); HRMS (FAB) Calcd for $\text{C}_{26}\text{H}_{38}\text{O}_6$ (MH^+): 446.2668. Found: 446.2658.

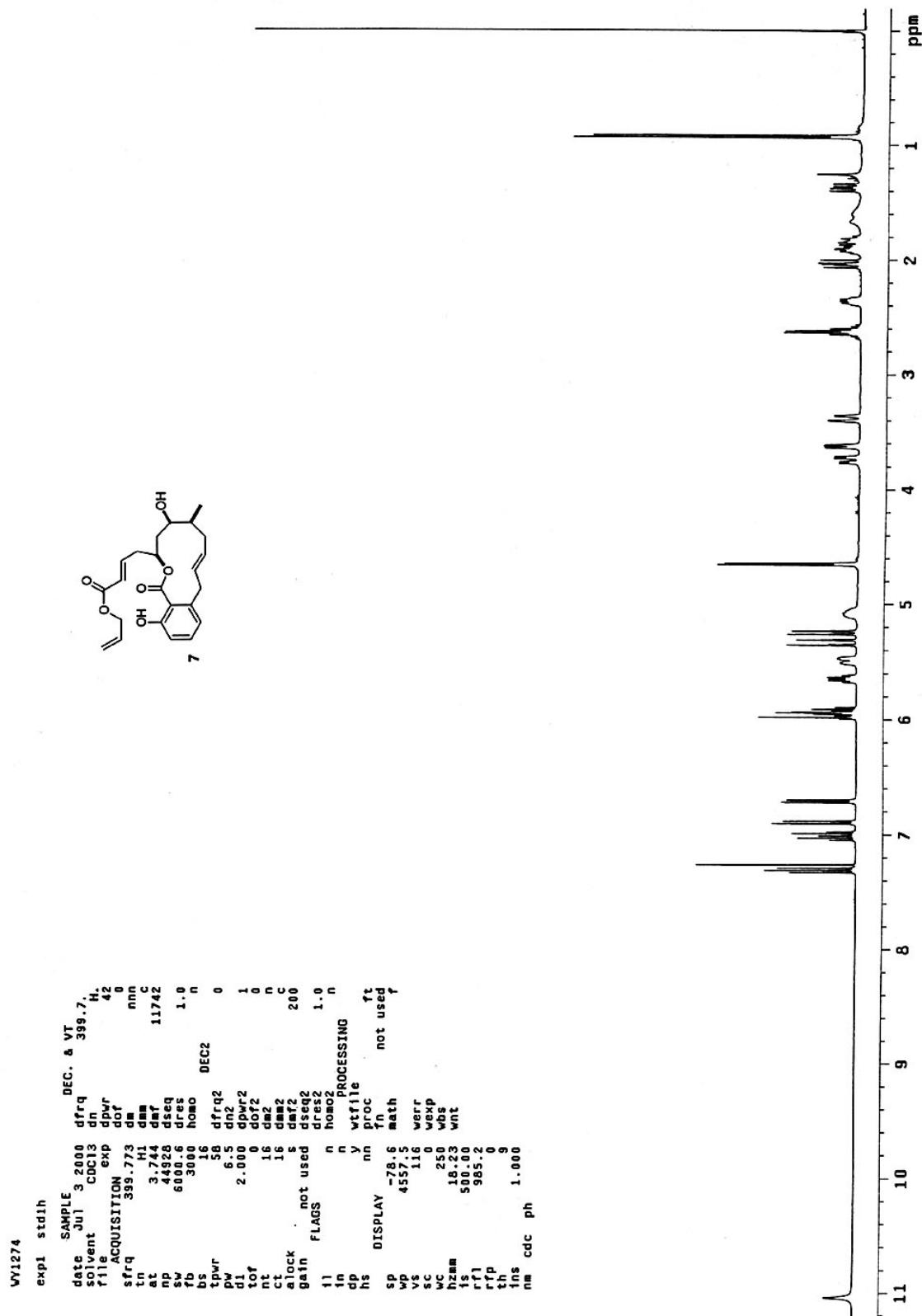
20: ^1H NMR (400 MHz, CDCl_3) δ 7.26 (1H, t, J = 8.0 Hz), 6.79 (1H, d, J = 7.6 Hz), 6.79 (1H, d, J = 8.4 Hz), 5.52 (1H, *app.q*, J = 8.0 Hz), 4.76 (2H, s), 5.83 (3H, s), 3.70-84 (3H, m), 3.44 (3H, s), 2.80-2.91 (1H, m), 2.42-2.51 (2H, m), 1.98-2.06 (1H, m), 1.87-1.95 (3H, m), 1.60-1.78 (3H, m), 1.42-1.56 (2H, m), 1.18-1.30 (2H, m), 0.91 (3H, d, J = 6.8 Hz); ^{13}C NMR (75 MHz, CDCl_3) δ 168.7, 156.5, 141.5, 130.8, 123.6, 122.4, 109.0, 96.7, 71.6, 58.9, 56.07, 55.97, 39.0, 35.8, 34.1, 31.8, 26.1, 15.4




21: ^1H NMR (400 MHz, CD_3OD) δ 7.25 (1H, *app.t*, J = 7.6 Hz), 6.75 (1H, d, J = 8.4 Hz), 6.73 (1H, d, J = 7.6 Hz), 6.44 (1H, d, J = 14.0 Hz), 5.14-5.22 (1H, m), 5.05 (1H, *app.dt*, J = 7.6, 14.0 Hz), 4.04 (2H, t, J = 6.4 Hz), 3.82-3.88 (1H, m), 3.66 (1H, *ddd*, 3.6, 12.4, 12.4 Hz), 2.39 (2H, *app.t*, J = 6.6 Hz), 2.21 (1H, *ddd*, J = 6.4, 12.4, 12.4 Hz), 2.10-2.20 (1H, m), 1.40-1.80 (9H, m), 1.30-1.40 (5H, m), 0.95 (3H, d, J = 6.8 Hz), 0.92 (3H, t, J = 6.4 Hz); MS (ES) m/z 448.20 ($[\text{M}+\text{H}]^+$, 100), 470.19 ($[\text{M}+\text{Na}]^+$, 32).




22: ^1H NMR (400 MHz, CD_3OD) δ 7.24 (1H, *app.t*, J = 8.0 Hz), 6.75 (1H, d, J = 8.4 Hz), 6.73 (1H, d, J = 7.2 Hz), 5.24-5.32 (1H, m), 3.99 (2H, t, J = 6.8 Hz), 3.86-3.92 (1H, m), 3.55 (1H, *ddd*, 3.6, 12.4, 12.4 Hz), 3.11 (2H, *app.t*, J = 6.8 Hz), 2.11-2.30 (2H, m), 1.45-1.77 (13H, m), 1.28-1.38 (5H, m), 0.94 (3H, d, J = 6.8 Hz), 0.91 (3H, t, J = 7.6 Hz); MS (ES) m/z 450.24 ($[\text{M}+\text{H}]^+$, 100), 472.24 ($[\text{M}+\text{Na}]^+$, 67).


IV. ^1H NMR spectra of compounds 1/11, ent-1, ent-11, 6-9, 12-18 and 20-22.

